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Informatics, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, 865 Changning
Road, Shanghai 200050, People’s Republic of China
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Abstract. The previous failure to directly derive a momentum-balance equation forN electrons
in a periodic potential stems from an excessive reliance on the validity of the commutation
relation [Rα, P β ] = iδαβ (α, β = x, y, z) between the centre-of-mass position operator
R = N−1 ∑

j rj and the total momentum operatorP = ∑
j pj (rj and pj are the position

and momentum of thej th electron). I point out that this commutation relation may no longer
hold true if electrons are limited to moving within a single energy band. By evaluating the rate
of change of the total momentum from the Heisenberg equation of motion and using the accurate
commutation relation in the single-band subspace, we obtain the momentum-balance equation
that I and my co-workers had given previously for a general energy band, without invoking
the effective Hamiltonian. By considering the rate of change of the total lattice momentum we
arrive at the modified B̈uttiker–Thomas force-balance equation having a reduction factor due to
Bragg scattering.

The success of the balance-equation approach [1] in simplifying complex transport
calculations, and the recent developments in superlattice miniband conduction [2–4], have
stimulated quite a few investigations into developing an effective-force-balance equation
capable of dealing with extremely nonparabolic systems. Several different schemes have
been proposed [5–10]. Among them, there are essentially two different effective-force-
balance equations which are able to give rise to bulk negative differential mobility of
the Esaki–Tsu [11] type in superlattice vertical transport, i.e. the force-balance equation
of Büttiker and Thomas [5] and the acceleration-balance equations that I and my co-
workers proposed [2, 7]. It has been shown that these equations can be obtained as the
moment equations from the Boltzmann transport equation [10], or as the rates of change
of the velocity and momentum from the Heisenberg equation of motion with an effective
Hamiltonian for Bloch electrons [7, 12]. Attempts to directly derive these equations without
utilizing the effective Hamiltonian were, however, unsuccessful [6, 8, 13]. In this letter I
point out that the reason for this failure stems from an excessive reliance on the validity of
the commutation relations between the centre-of-mass position operatorR and the total
momentum operatorP : [Rα, P β ] = iδαβ(α, β = x, y, z). This commutation relation
certainly holds true in the full electron space, but may no longer be valid when electrons
are limited to moving within a single energy band. By evaluating the rate of change of the
total momentum from the Heisenberg equation of motion and using accurate commutation
relations in the single-band subspace, we obtain the momentum-balance equation as given
in [7], for a general energy band, without invoking the effective Hamiltonian. Considering
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the rate of change of the total crystal momentum we arrive at the modified Büttiker–Thomas
(B–T) force-balance equation [5] having a reduction factor due to Bragg scattering.

We consider a system ofN electrons moving in a periodic potentialU(r) subject to a
uniform electric fieldE and impurity and phonon scatteringsHI . The Hamiltonian of this
system is generally written as (¯h = 1 = kB) H = He + HE + HI . Here

He =
∑

j

hj hj = p2
j

2me

+ U(rj ) (1)

whererj and pj are the position and momentum of thej th electron andme is the free-
electron mass, and

HE = −NeE · R (2)

is the electric field potential, with

R = 1

N

∑
j

rj (3)

being the centre-of-mass (CM) position operator. The total momentum of the system defined
by

P =
∑

j

pj (4)

has the following well-known commutation relation withR:

[Rα, P β ] = iδαβ (α, β = x, y, z). (5)

The complete set of the Bloch functions,{|nk〉} (n is the band index andk is the lattice
vector), which are eigenfunctions of the single-particle Hamiltonianh, h|nk〉 = εn(k)|nk〉,
spans the whole space for electrons in the periodic potential. In the second-quantization
representation of Bloch states the HamiltonianHe, the CM coordinateR and the total
momentumP are expressed respectively as

He =
∑
n,k,σ

εn(k)c
†
nkσ cnkσ (6)

R = 1

N

∑
n,n′,k,k′,σ

[iδnn′ ∇δ(k − k′) + xnn′(k) δ(k − k′)]c†
nkσ cn′k′σ (7)

and

P =
∑

n,n′,k,σ

[kδnn′ + pnn′(k)]c†
nkσ cn′kσ . (8)

Here c
†
nkσ and cn′kσ are electron creation and annihilation operators corresponding to the

Bloch state|nk〉 and spinσ , and

pnn′(k) = −i
∫

u∗
n(k, r) ∇run′(k, r) d3r

and

xnn′(k) = i
∫

u∗
n(k, r) ∇kun′(k, r) d3r

are integrals over the unit cell in conjunction with the cell functionun(k, r) associated with
the Bloch state|nk〉 [14].

In the presence of a slowly varying external electric field, i.e. when effects such
as interband (Zener) tunnelling are negligible (e.g. in the case of superlattice miniband
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transport), it is a good approximation to assume that electrons move entirely among the
states of a single energy band [15]. Restricting electrons to the energy band of indexn,
having energyεn(k) = ε(k) (for brevity the band indexn will be neglected hereafter), we
are in fact dealing with a system which is described by the HamiltonianHs = Hs

e +Hs
E+Hs

I ,
rather thanH . Here

Hs
e =

∑
k,σ

ε(k)c
†
kσ ckσ (9)

and

Hs
E = −NeE · Rs (10)

whereRs stands for CM position of electrons moving in the single band:

Rs = i

N

∑
k,k′,σ

[∇δ(k − k′)]c†
kσ ck′σ + 1

N

∑
k,σ

x(k)c
†
kσ ckσ . (11)

Meanwhile, when these electrons reside only in this single band, the total momentum is
expressed as [16]

Ps =
∑
k,σ

〈k|p|k〉c†
kσ ckσ = me

∑
k,σ

v(k)c
†
kσ ckσ (12)

wherev(k) ≡ ∇ε(k) is the velocity function. For the expression forHs
I in the second-

quantization representation please refer to [7]. Thus what we are dealing with is not the
full space of the electrons in the periodic potential but a subspace of it, which we may call
the single-band subspace. In the single-band subspace the commutation relations among
physical quantities may be different from those in the full electron space. For instance, we
have

[Hs
e , Ps ] = 0 (13)

while in the full electron space [He, P ] 6= 0. Furthermore, in the single-band subspace the
total momentum operatorPs and the CM position operatorRs do not obey a commutation
relation like equation (5). In fact, it is easily verified from equations (11) and (12) thatRs

andPs obey the following commutation relation (α, β = x, y, z):

[Rα
s , P β

s ] = ime

N

∑
k,k′,q,σ,σ1

[∇δ(k − k′)]vβ(q)[c†
kσ ck′σ , c†

qσ1
cqσ1]

= ime

N

∑
k,k′,σ

[∇δ(k − k′)][vβ(k) − vβ(k′)]c†
kσ ck′σ

= ime

N

∑
k,σ

(
∂2ε(k)

∂kα ∂kβ

)
c
†
kσ ckσ ≡ imeK̂αβ (14)

whereK̂αβ stands for theαβ-component of the tensor̂K. Equation (14) may be drastically
different from commutation relation (5) unless the energy band discussed is parabolic.

Calculating the rate of change of the total momentum from the Heisenberg equation of
motion

dPs/dt = i[Hs
e , Ps ] + i[Hs

E, Ps ] + i[Hs
I , Ps ] (15)

in which the first term on the right-hand side vanishes, the second term, according to (14),
becomes

[Hs
E, Ps ] = −imeNeE · K̂ (16)
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and the third term is the frictional force

F̂ ≡ i[Hs
I , Ps ] (17)

we have

dPs/dt = meNeE · K̂ + F̂ . (18)

Or, by definingv̂d ≡ Ps/Nme andÂ ≡ F̂ /Nme, we can write

dv̂d/dt = eE · K̂ + Â. (19)

This is exactly the operator equation for acceleration balance derived in [7] with the help
of the effective Hamiltonian for electrons in a single band. Taking the statistical average
of equation (19) with respect to an appropriate density matrixρ0 which is diagonal in the
lattice wavevector, we obtain the acceleration-balance equation as given in [7]. The present
derivation indicates that this equation is just the balance equation for the total momentum
of the system.

On the other hand, in the single-band subspace we may define the total lattice momentum
operator of electrons as

P̂ ` =
∑
k,σ

p(k) c
†
kσ ckσ (20)

where the functionp(k) represents the ‘lattice momentum’ of an electron in thek-state:
p(k) = k if k is located in the interior of the Brillouin zone (BZ), and it is a periodic function
if k is allowed to go beyond the BZ in the periodic zone scheme:p(k) = p(k + G). In
equation (20) the summation runs over all of the electron states in the single band, i.e.k
should cover a semiclosed BZ: the whole interior of the zone and a half of the zone boundary.
We have the commutation relation

[Rs , P`] = i

N

∑
k,k′,q,σ,σ1

[∇δ(k − k′)]p(q)[c†
kσ ck′σ , c†

qσ1
cqσ1]

= i

N

∑
k,σ

[∇p(k)]c†
kσ ckσ ≡ iR̂. (21)

Here the tensor operator̂R is given by

R̂ = I − 1

4π3n

∮
SBZ

ds k c
†
kσ ckσ . (22)

The first term (the unit tensor) on the right-hand side of equation (22) comes from the sum
over the interior of the BZ wherep(k) = k such that∇p(k) = I. The second term with
a closed-area integral over the BZ boundary results from the jump of thep(k)-function at
the BZ boundary [12]. Heren is the electron density.

Calculating the rate of change of the total lattice momentum from the Heisenberg
equation of motion

dP`/dt = i[Hs
e , P`] + i[Hs

E, P`] + i[Hs
I , P`] (23)

where the first term on the right-hand side vanishes,

[Hs
e , P`] = 0 (24)

and the second term yields

[Hs
E, P`] = −iNeE · R̂ (25)
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while the third term is denoted as the frictional force related to the lattice momentum

F̂
` ≡ i[Hs

I , P`] (26)

we have
dP`

dt
= NeE · R̂ + F̂

`
(27)

or
dp̂`

dt
= eE · R̂ + f̂

`
(28)

where p̂` ≡ P`/N is the lattice momentum per particle, andf̂
` ≡ F̂

`
/N is the lattice-

momentum-related frictional force per particle. Taking the statistical average of equation
(28) with respect to an appropriate density matrix, we arrive at

dpd

dt
= eE · R + f ` (29)

wherepd = 〈p̂`〉, R = 〈R̂〉, andf ` = 〈f̂ `〉. This is the force-balance equation first given
by Büttiker and Thomas [5] with a reduction factorR. The present derivation clarifies the
fact that the ‘momentum’pd , appearing in the B̈uttiker–Thomas equation, is the average
lattice momentum (per particle) rather than the average (physical) momentum (per particle)
discussed in equation (12):

ps = mevd . (30)

Hereps = 〈Ps/N〉 andvd = 〈v̂d〉. No matter what density matrix is used for the statistical
average, equation (30) cannot be a valid relation between the average lattice momentum
and the average drift velocity, unless the energy band is parabolic. The previousansatz
used in [5],pd = mevd , should be abandoned. Furthermore, equation (26) enables us to
obtain a generally valid expression for the lattice-momentum-related frictional force [12],
allowing more accurate analysis of transport than the constant-relaxation-time approximation
previously adopted [5].
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and Shanghai Municipal Commissions of Science and Technology of China for support of
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